
Verilog Troubleshooting and Tips
CS-173 Fundamentals of Digital Systems

27th April 2025

Mirjana Stojilović
Parallel Systems Architecture Lab (PARSA)

Verilog Troubleshooting and Tips
CS-173 Fundamentals of Digital Systems

0

Introduction

Here is a small guide designed to help you better understand all the relevant aspects of
Verilog for this course. The first section also includes some general tips. If something
should be added, feel free to mention it on Ed Discussion or in the exercise sessions,
and we will consider updating this document. Foremost, even if this document is
reread before publication, please consider that there may be some errors. If you find
them, please report them on Ed Discussion so we can address them quickly.

This document is not meant to replace the Verilog coding guideline you can find
on Moodle. This document is a general extension that aims to help you with related
tools, such as the terminal and debugging.

1 Terminal Tips and Tricks

1.1 General Commands

Here is a nonexhaustive list of useful commands to know (or to keep under your reach
when using any terminal):

• ls (list): lists all files and directories in the current directory;

• cd (change directory): helps you navigate through the terminal;

• ./: executes the binary file given directly after.

Here is a small example: Inside the /folder directory of our computer, we have
a folder named /Folder1 and a file named file1. Inside the Folder we have two
files file2 and /file3. Imagine that we want to execute the binary file file2. We
would do the following:

/folder > ls
Folder1 file1

/folder > cd Folder1

/folder/Folder1 > ls
file1 file2

/folder/Folder1 > ./file2
(Will execute the code of the file)

Now, a useful command if you fall in the wrong directory, don’t worry, you don’t
have to restart your terminal: use the .. (this means: go back to the last directory visited,
the parent directory). For example, with the same directories and files as above:

2 of 13 Version 1.0 of 27th April 2025, EPFL ©2025

0 Verilog Troubleshooting and Tips
CS-173 Fundamentals of Digital Systems

/folder > ls
Folder1 file1

/folder > cd Folder1

/folder/Folder1 > ls
file1 file2

/folder/Folder1 > cd ..

/folder > ls
Folder1 file1

As you can see, we go from /folder into /Folder1 and then back from /Folder1 to
/folder! A general remark is, as you may have noticed, you can see the full path of where
you are inside the terminal at the beginning of the command line.

A last command that can prove helpful is the rm (remove). This command removes a file
(or a folder when you add -r). But be aware that this is a definitive choice, that means that
once you have removed something with the rm or rm -r command, the item deleted is unre-
coverable. Special note to the -f flag (that stands for “force”) that you can use with the rm, you
should not use it unless you are absolutely sure what you are doing and why.

1.2 Verilog Commands
As you have probably seen, we often use the same set of commands in the terminal. Here they
are listed and explained in detail (for trouble while running them, please take a look at the next
section):

• iverilog: compiles a Verilog file;

• gtkwave: runs a .vcd file to get the graphical interface of gtkwave;

• ./ (for mac and linux): executes the file given directly after (the output produced
by the iverilog command below);

• vvp (for windows): executes the file given directly after (the output produced by the
iverilog command below).

iverilog -o OutputName module.v tb.v

The command can be decomposed as follows:

• -o OutputName: creates the file named OutputName which will be the result of the
compilation;

• module.v: the name of the module file that you want to compile;

• tb.v: the name of the testbench file associated with the file module.v that you are
compiling.

Version 1.0 of 27th April 2025, EPFL ©2025 3 of 13

Verilog Troubleshooting and Tips
CS-173 Fundamentals of Digital Systems

0

For example, imagine that we have a module named mymodule.v and a testbench
mytestbench.v in the directory folder.

Demo for Mac and Linux users

/folder > ls
mymodule.v mytestbench.v

/folder > iverilog -o NewCreatedFile mymodule.v mytestbench.v
/folder > ls
mymodule.v mytestbench.v NewCreatedFile

/folder > ./NewCreatedFile
(Will execute the code of the file)

/folder > ls
mymodule.v mytestbench.v NewCreatedFile theFileForgtkwave.vcd

/folder > gtkwave theFileForgtkwave.vcd
(Will open gtkwave with the content of the file)

Here, you can see that you don’t need to add an extension name to the file you create; your
computer will do it automatically.

Demo for Windows users

/folder > ls
mymodule.v mytestbench.v

/folder > iverilog -o NewCreatedFile.vvp mymodule.v mytestbench.v
/folder > ls
mymodule.v mytestbench.v NewCreatedFile

/folder > vvp NewCreatedFile.vvp
(Will execute the code of the file)

/folder > ls
mymodule.v mytestbench.v NewCreatedFile theFileForgtkwave.vcd

/folder > gtkwave theFileForgtkwave.vcd
(Will open gtkwave with the content of the file)

Here, you have to note that to run, you have to create a file with the extension .vvp and then
use the command vvp to run it.

Note: With those examples, you can see that the .vcd file for gtkwave was created only after
the execution of the file NewCreatedFile (or NewCreatedFile.vvp).

Note: If you ever need to compile more than one file at a time (for example, with the ripple
carry adder), you can add multiple files after the output name of the file you want to create.

After reading this, you should be ready to move on to the next section, where we will
discuss a terrible subject. . . compiling issues!

4 of 13 Version 1.0 of 27th April 2025, EPFL ©2025

0 Verilog Troubleshooting and Tips
CS-173 Fundamentals of Digital Systems

2 Compiling Issues
Here comes the most painful yet helpful section of this guide, which will help you master
compiling issues.

As a refresher, here is the complete version of the command to use: iverilog -o
outputname module.v tb.v

• No such file or directory / No top-level modules, and no -s option

– Try to save all files (the module and the testbench).

– Check that you are in the right directory and that all files are present (with the ls
command).

– Check if your command is not missing some part, check if you have the -o option,
the name of the file that you want to create, and then the module and the testbench
(the correct command is above).

• module.v:XX: syntax error

– For specific syntax errors, refer to the next section.

– If your line XX seems correct, check the line above if you are not missing a semicolon
(;).

• These modules were missing: moduleName referenced 1 times.

– Check the module name you want to instantiate (does it correspond to the real
name).

– Check that the module you give in the command is used in the testbench.

Version 1.0 of 27th April 2025, EPFL ©2025 5 of 13

Verilog Troubleshooting and Tips
CS-173 Fundamentals of Digital Systems

0

3 Verilog Global Syntax

3.1 Boolean Logic

These examples will be straightforward, so we will not detail them much. Based on those
simple blocks, you can easily make more complicated ones (think of implementing a NOR, a
NAND, and other more complex ones).

3.1.1 And, Or, and Xor

a & b;
a | b;
a ˆ b;

3.2 If, Else If, Else

See the example below. Note that as the instructions are only one line long, you can omit the
begin and end tags, which makes it much easier to read; this is also referenced in the last
section. Also, you have to use conditional statements only in the always block.

module mymodule (
input a,
input b,
output reg [1:0] out

);

always @* begin
if (a & b) begin

out = 2'b01;
end else if (a | b) begin

out = 2'b10;
end else begin

out = 2'b00;
end

end
endmodule

3.3 Case Switch

Note that here the case syntax can also be used only inside an always block.

6 of 13 Version 1.0 of 27th April 2025, EPFL ©2025

0 Verilog Troubleshooting and Tips
CS-173 Fundamentals of Digital Systems

module mymodule (
input [2:0] in,
output reg [2:0] out

);

always @* begin
case (in)

valueIn0: out = valueForOutput0;
valueIn1: out = valueForOutput1;
valueIn2: out = valueForOutput2;
valueIn3: out = valueForOutput3;
default: out = defaultOutputValue;

endcase
end

endmodule

3.4 Always Blocks
As you know, an always block will be triggered when an input changes, but how can we tell
which inputs can trigger the execution of the always block? Before diving into it, you must
know that the @, also called a sensitivity list, is used to specify precisely that.

3.4.1 always @* / always@(*)

The star * means every input. So whenever you have input that changes, the block will always
be evaluated! For instance, in the example below, as long as a or b or c (or multiple of them)
changes, the always block will be evaluated:

module mymodule(
input a, b, c,
output reg [2:0] out

);

always @* begin
out <= a + b + c + 1;

end

endmodule

3.4.2 always @(posedge clk)

A syntax that you will soon love, in which the always block will be triggered only when the
input (named clk here as a reference to the clock) goes from 0 to 1 (i.e., at each rising edge of
the clock). For instance, the following program will count the clock’s rising edges.

Version 1.0 of 27th April 2025, EPFL ©2025 7 of 13

Verilog Troubleshooting and Tips
CS-173 Fundamentals of Digital Systems

0

module mymodule (
input clk,
input rst,
output reg [4:0] out

);

always @(posedge clk) begin
if (rst)

out <= 0;
else

out <= out + 1;
end

endmodule

3.4.3 always@(negedge clk)

After reading the previous section, guessing what appears here may be very easy: it’s the
opposite. Here, the negedge means ’negative edge’, so it will count the number of times the
clock will go from 1 to 0. So, for example, if we consider the following program:

module mymodule (
input clk,
input rst,
output reg [4:0] out

);

always @(negedge clk) begin
if (rst)

out <= 0;
else

out <= out + 1;
end

endmodule

Even if it is almost the same program as the one in the previous section, it fulfills a very different
role!

3.4.4 Reg or Not Reg ?

The answer is simple: Will the variable be modified in an always block? If the answer is yes,
it must be declared a reg; otherwise, it shouldn’t be.

With all those syntaxes, you have everything you need to move on to the next section,
which will advise you to avoid trouble while coding in Verilog.

8 of 13 Version 1.0 of 27th April 2025, EPFL ©2025

0 Verilog Troubleshooting and Tips
CS-173 Fundamentals of Digital Systems

4 Verilog Coding Tips to Avoid Issues
This section is more of a recap of what has been said in the lectures. We tried to keep track
of the most recurrent issues and errors that students make during exercise sessions to provide
you with some help on more specific things. Let us reemphasize that the goal of this is not to
replace the PDF available on Moodle but rather to complement it, you should therefore read
it carefully.

4.1 Begin and End

As you always put initial and closing parentheses in Java, remember always to put your begin
and end tags to avoid unnecessary problems. This is relatively easy to do as Verilog uses a lot
of color to help you. Also, as mentioned above, if you have one-liner execution (for example,
in an if), the program may be easier to read if you omit the begin and end tags (this is a
supported syntax, like in most programming languages).

4.2 Always Block

You have three good practices to adopt in an always block that describes a combinational
circuit: (1) always use blocking assignments, (2) use * so that always block reacts to changes to
any of the inputs, and (3) give variables a default value at the beginning of the always block
(if this is possible, of course).

Also, if you were to code different always blocks for some reason (and that can happen),
make sure that the blocks are independent, which means that you don’t modify the same vari-
able at two distinct places simultaneously.

4.3 Case Statement

As simple as this can sound, always set your case statement to a default value (something you
should also do in Java). This way, the program won’t break for bad input, and finding out what
goes wrong while debugging will be easier.

4.4 Module Name

Verilog doesn’t have strict naming conventions, but we suggest always naming your module
the same way you name your file. This can help avoid unnecessary debugging.

4.5 Testbenches

4.5.1 Unknown Module Name

A standard error while writing test benches is when the name of the module you instantiate
is underlined in red. This can happen even if your code is correct. One way to avoid this is
to ignore it, as it doesn’t cause any compiling issues or bugs in the behavior of your program.
Another, better idea is to add the following line at the top of your testbench:

Version 1.0 of 27th April 2025, EPFL ©2025 9 of 13

Verilog Troubleshooting and Tips
CS-173 Fundamentals of Digital Systems

0

‘include "file.v"

If the module name is still declared as an error even with this, you have a fundamental
error and won’t be able to compile. An easy way to solve this problem is to check if all your
modules have the same name as their respective files (as mentioned in the previous point).

4.5.2 Module Instantiation

In Verilog, module instantiation is quite easy. It is done in the way shown in the module
testbench below.

module testbench;
reg inputFromTestBench1;
reg inputFromTestBench2;
wire outputFromTestBench;

module_name TheNameThatYouWant(
.inputOfTheModule1(inputFromTestBench1),
.inputOfTheModule2(inputFromTestBench2),
.outputFromTheModule(outputFromTestBench));

initial begin
// test your module in here

end

endmodule

Let’s slow down a little bit and analyze this in detail. First, the variables we will give to
the program are declared as reg because we will modify them into an initial block, whereas
the output is declared as a wire. After all, it will only store the output value of the program.
Note: In testbenches, we use initial and not always because always may not terminate,
as opposed to initial, which will be called only once.

• inputFromTestBench1 and inputFromTestBench2 are the variables you will
modify in your testbench and feed to your module as input.

• outputFromTestBench is the output you will link to the appropriate port of your mod-
ule to get back the output to check its validity.

• module name is the name of the module you want to instantiate.

• TheNameThatYouWant is the name you want to give to your module (as suggested here,
the name doesn’t matter, you can put whatever you want here).

Now, for the most complicated part, how do we link the values of the testbench that we will
use to the actual module to test? If you think a bit about it, you should be able to figure out the
syntax from the above example. You first use a “.” to indicate that you want to access a specific

10 of 13 Version 1.0 of 27th April 2025, EPFL ©2025

0 Verilog Troubleshooting and Tips
CS-173 Fundamentals of Digital Systems

port of your module, then you put the port’s name, and after that, between the parentheses,
you put the actual variable of your testbench.

4.5.3 $ Tags

In the testbenches already provided, you may have noticed some $ followed by some
keywords. But what do they do exactly?

Display tag: $display. The display tag is used to print a line in the terminal. For instance,
the following line will print out in the terminal “The value of i = 2 and the value of j = 3”:

$display("The value of i = %d and the value of j = %d", 2, 3);

As you might have noticed, you can put as many %d as you want; for each one, the
compiler will look up the corresponding variable after the end of the string to print.
For more info on the string format specifiers, such as %d, visit the following page:
https://www.chipverify.com/verilog/verilog-display-tasks.

VCD-related Tags: $dumpfile and $dumpvars. We decided to put both in the same part
because they are closely related: with both, you create the .vcd file to visualize with gtkwave.
For example:

$dumpfile("nameAsYouWish.vcd");
$dumpvars;

This will create a file named “nameAsYouWish.vc” that you will be able to give to gtkwave for
the visualization.

$finish tag is there to help you see if the program executes correctly, as it will print out
a line like the following to let you know that the program executed (this will help you avoid
searching for a bug that doesn’t exist in your module):

yourTB.v:XX: $finish called at 5410 (1s)

Note that the finish time may vary. The general idea is to have this line printed in the terminal
to confirm that everything is executed correctly.

4.5.4 Time Waiting with a Clock #XX

Something to consider when writing a testbench is the waiting time we should give to our
circuit to compute what it has to calculate correctly. The rule is quite simple: when you switch
your clock up and down periodically, each n time units, you have to make your program wait
for 2n time units before changing the input. Why is that? To change the input at each complete
clock cycle.

In the tb module below, you can see that for each 5 time units, the clock will switch state,
and after assigning the value that we want to test to the input, we make it wait 10 time units.

Version 1.0 of 27th April 2025, EPFL ©2025 11 of 13

Verilog Troubleshooting and Tips
CS-173 Fundamentals of Digital Systems

0

Another interesting thing is that before looping, we assign a default value to all inputs (here
only to the clock, as it is the only one), and we make the program wait for a full clock cycle.
This is done to avoid undefined states.

module tb;

reg clk;
wire [4:0] out;
integer expected;

periodic_counter nom (.clk(clk), .out(out));

initial begin
clk = 0;
#10;
for (integer i = 0; i < 540; i = i + 1) begin

expected = i % 32;
#10;
if (out != expected)

$display("%d, error at time ", i);
end
$finish;

end

always begin
#5 clk <= ~clk;

end

endmodule

4.5.5 Error Code

When running your program, you may have an unwanted result if your program is not well
implemented:

• U (unknown): Your wire or reg is not connected.

• X (error): a wire that may be connected to multiple outputs (modifying the same reg
inside two different blocks).

4.5.6 i++ or ++i or i+=1 ?

Spoiler alert: None of them! In Verilog, the only valid syntax is i = i + 1, so be careful when
using it in a loop. This is a basic thing to know, but it may save you some trouble, so always
write i = i + 1 when you need to increment something.

12 of 13 Version 1.0 of 27th April 2025, EPFL ©2025

0 Verilog Troubleshooting and Tips
CS-173 Fundamentals of Digital Systems

5 Conclusion
Here we come to the end of this document. We hope it is helpful to you and that you have
learned something interesting or confirmed what you were thinking. However, if you have
any persistent doubts, please get in touch with an assistant through Ed Discussion or in an
exercise session. Again, if something should be added, don’t hesitate to discuss it with us!

Acknowledgments
Authors and contributors: Martin Bouvet, Simon Lefort, and Juan Iaconucci (teaching assist-
ants in Spring 2025).

Version 1.0 of 27th April 2025, EPFL ©2025 13 of 13

	Terminal Tips and Tricks
	General Commands
	Verilog Commands

	Compiling Issues
	Verilog Global Syntax
	Boolean Logic
	And, Or, and Xor

	If, Else If, Else
	Case Switch
	Always Blocks
	always @* / always@(*)
	always @(posedge clk)
	always@(negedge clk)
	Reg or Not Reg ?

	Verilog Coding Tips to Avoid Issues
	Begin and End
	Always Block
	Case Statement
	Module Name
	Testbenches
	Unknown Module Name
	Module Instantiation
	$ Tags
	Time Waiting with a Clock #XX
	Error Code
	i++ or ++i or i+=1 ?

	Conclusion

